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Molecular iodine-catalyzed one-pot synthesis of substituted
quinolines from imines and aldehydes
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Abstract—A mild, efficient, and general method for the synthesis of substituted quinolines via a molecular iodine-catalyzed one-pot
domino reaction of imines with enolizable aldehydes has been described.
� 2006 Elsevier Ltd. All rights reserved.
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Table 1. Screening for the reaction conditionsa

Entry Catalyst
(mol %)

Solvent Temp
(�C)

Time
(h)

Yieldb

(%)

1 1 THF Reflux 0.5 60
2 1 CH3CN Reflux 0.5 65
3 1 ClCH2CH2Cl Reflux 0.5 72
4 10 MeOH Reflux 12 15
5 10 DMSO 80 2 45
6 10 Benzene rt 12 Trace
7 1 Benzene Reflux 0.5 79
8 10 Benzene Reflux 0.1 80
9 0 Benzene Reflux 12 0
Quinoline and their derivatives, which usually possess
diverse biological activities, play important roles as
versatile building blocks for the synthesis of natural
products and as therapeutic agents.1 In particular,
2-arylquinolines are biologically active and occur in
structures of a number of antimalarial compounds and
antitumor agents.2 Therefore, the synthesis of quinolines
has attracted much attention in organic synthesis. The
classic methods for the synthesis of quinolines include
Skraup, Doebner–von Miller, Conrad–Limbach, Com-
bes, and Pfitzinger quinoline syntheses.3 A number of
general synthetic methods have also been reported.4

However, some of these methods suffer from several
disadvantages such as harsh reaction conditions, multi-
steps, a large amount of promoters, and/or long reaction
time. Therefore, the development of new synthetic
approaches using mild reaction conditions remains an
active research area.

Iodine has been used as a mild and efficient catalyst for
various organic transformations.5 In continuation of
our efforts to develop new synthetic routes of hetero-
cycles,6 herein we report a molecular iodine-catalyzed
one-pot synthesis of substituted quinolines from imines
and enolizable aldehydes (Scheme 1).

In a preliminary experiment, refluxing a solution of imine
1a, decyl aldehyde (2a), and iodine (10 mol %) in benzene
under an air atmosphere for 1 h afforded 2-phenyl-
3-octylquinoline (3a) in 80% isolated yield. The product
3a was fully characterized by spectroscopic analysis.
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We have examined the conditions for the reaction of 1a
with 2a. Among the solvents tested, benzene gave the
best result (Table 1, entries 7 and 8). CH3CN,
ClCH2CH2Cl, MeOH, THF, or DMSO gave the pro-
duct 3a in lower yields (Table 1, entries 1–5). When the
a All reactions were performed using 1a (1.2 mmol), 2a (1.0 mmol), and
a solvent (5 mL) under an air atmosphere.

b Isolated yield.
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reaction was performed at room temperature (Table 1,
entry 6) or in the absence of iodine (Table 1, entry 9),
no product was obtained. Furthermore, the reaction
Table 2. Iodine-catalyzed reaction of imines 1 with aldehydes 2a

Entry Imine Ald

1
N

1a

n-C

2 1a n-C

3 1a n-C

4 1a n-C

5 1a n-C

6 1a i-C3

7 1a PhC

8 N

Br 1b

2a

9 N

Br

MeO

1c

2a

10 N

Me

EtO

Me

1d

2a

11 N

Me

Br

1e

2a

12 N

Cl

EtO

1f

2b

13 1b 2c

14
N

Br

1g

2c

15
N

EtO

1h

2c

16 1f 2d

17

N

Me

Br 1i

2f

18 1b 2g

a All reactions were performed using 1a (1.2 mmol), 2a (1.0 mmol), and I2 (
0.5 h.

b Isolated yields.
time and the catalyst concentration can be reduced
to 0.5 h and 1 mol %, respectively (Table 1, entries 7
and 8).
ehyde Product Yield (%)b

8H17CH2CHO 2a 3a 79

7H15CH2CHO 2b 3b 75

6H13CH2CHO 2c 3c 80

5H11CH2CHO 2d 3d 72

4H9CH2CHO 2e 3e 70

H7CH2CHO 2f 3f 75

H2CHO 2g 3g 65

3h 86

3i 80

3j 63

3k 68

3l 81

3m 82

3n 75

3o 77

3p 75

3q 82

3r 69

0.01 mmol) in benzene (5 mL) under an air atmosphere and reflux for
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Under the optimized reaction conditions, a variety of
imines 1a–i and enolizable aldehydes 2a–g were tested
(Table 2).7 Diphenylimine 1a reacted with aldehydes
2a–g to afford the corresponding 3-substituted 2-phenyl
quinolines 3a–g in moderate to good yields (Table 2,
entries 1–7). Substituted imines 1b–i bearing functional
groups such as Br, Me, or MeO, also reacted smoothly
with various aldehydes to afford the desired substituted
2-arylquiniolines 3h–r (Table 2, entries 8–18). It is note-
worthy that bromoquinolines may be subjected to
further transformation via a C–C bond coupling reac-
tion. However, when using enolizable acetophenone in-
stead of the aliphatic aldehydes, no quinoline product
was isolated.

To expand the preparative utility, a two-step, one-pot
synthesis of 2-arylquinolines from an arylamine, an aro-
matic aldehyde and an aliphatic aldehyde was examined
(Scheme 2). Using 1 mol % of iodine as catalyst, the
imine generated in situ from aniline and 4-bromobenz-
aldehyde (1 equiv) in benzene reacted with decanal (2a)
under reflux and an air atmosphere conditions to afford
the quinoline 3h in 70% yield. The addition of anhy-
drous MgSO4 or 4 Å molecular sieve powder did not
help to improve the yield.

We also examined the in situ generated alkylimines,
which are hygroscopic, unstable, and difficult to be puri-
fied by distillation, recrystallization, or column chroma-
tography. When p-tolylamine (1.0 equiv) was treated
with nonanal (2b) (2.3 equiv) in the presence of iodine
(1 mol %) in benzene under reflux and an air atmo-
sphere, the resulting alkylimine further reacted with
excess aldehyde 2b to give the corresponding 3,4-di-
alkyl-substituted quinoline 4 in 60% yield (Scheme 3).8

According to the literatures,5e,9 we think that iodine cata-
lyzes the reaction as a mild Lewis acid. The mechanism
was proposed as shown in Scheme 4. In the presence of
iodine, octanal (2c) is in equilibrium with the enol form
2c 0, in the presence of iodine, which was confirmed by
1H NMR experiment.10 The in situ generated enol
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immediately reacts with the iodine-activated imine 1a 0

to form intermediate 3c-1,11 followed by an intramole-
cular Friedel–Crafts cyclization to give 3c-2. The subse-
quent dehydration of 3c-2 results in dihydroquinoline
3c-3, which is further oxidized by air to give an aroma-
tized quinoline 3c. These reactions take place in a one-
flask domino manner.

In summary, we have developed a new and general route
to substituted quinolines from imines and enolizable
aldehydes. A catalytic amount of molecular iodine
(1 mol %) effectively initiates the reaction in a one-pot
domino process to give the products. The procedure
offers several advantages including mild and metal-free
reaction conditions, operational simplicity, inexpensive
reagents, and short reaction time.
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